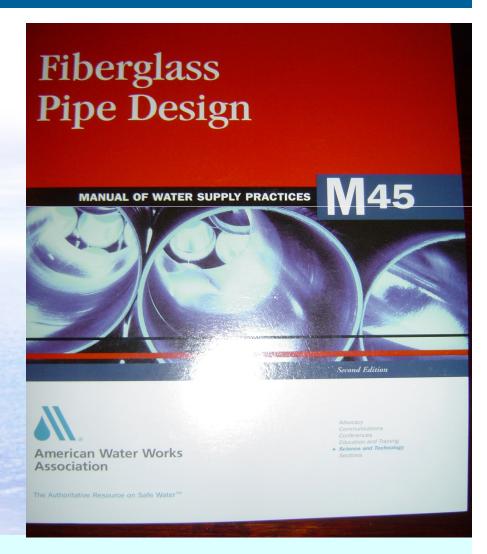

Capacity and Applications of HDPE for various piping and Experience in Middle East



AMIANTIT PIPE SYSTEMS

Sadath A Khan

Engineering Manager GRP/PE Division-Amiantit Dammam A Member of Standards Committee AWWA C-950 and M45-for GRP Pipes AWWA-D-120 for GRP Tanks

Topics of Presentation

- Middle East
- Adoption of HDPE in ME
- Advantages of HDPE
- Applications of HDPE
- **Case Histories**
- Capacity of Amiantit
- Cautions in specifying HDPE
- Conclusions

AMIANTIT PIPE SYSTEMS

Middle East

Typical Characteristics and Effects

AMIANTIT PIPE SYSTEMS

Under Ground

Mark Low Electrical Resistivity of Soils

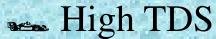
Effects on Piping

Typical Characteristics and Effects

AMIANTIT PIPE SYSTEMS

Above Ground

- Varying Geomorphic Conditions
- Changing Climates
- Fluctuating Humidity's
- **■** Fast Track Construction


Effects on Piping

- Loading Effects
- Temperature Extremes
- Fatigue Effects
- Durability Problems

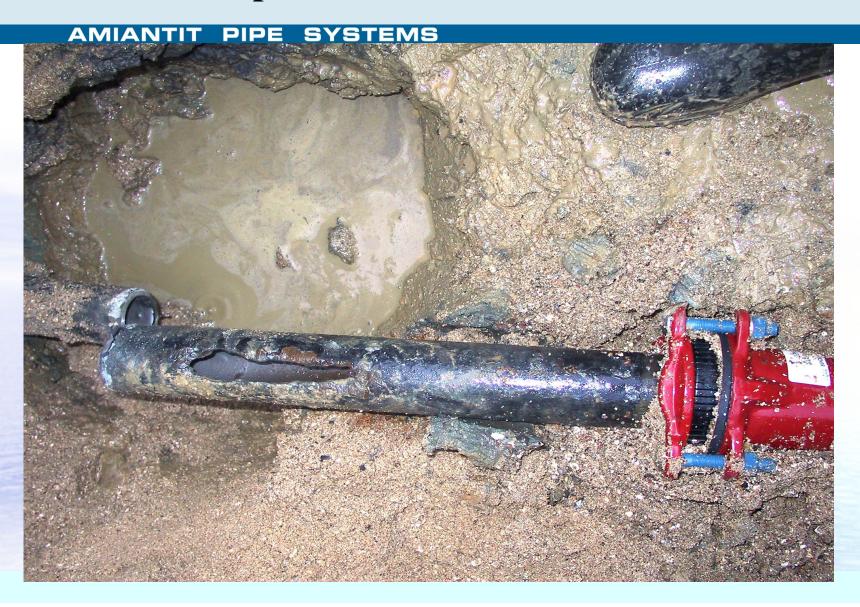
Typical Characteristics and Effects

AMIANTIT PIPE SYSTEMS

Sea Water

Unstable Seabed

Effects on Piping


Higher Corrosiveness

Constructability

Iron and Steel Pipe Failures Due to Corrosion


Iron and Steel Pipe Failures Due to Corrosion

Iron and Steel Pipe Failures Due to Corrosion

Environmental corrosion MIC in concrete

Galvanic corrosion

AMIANTIT PIPE SYSTEMS

Answer is HDPE-Why?

One of the best possible Answer is HDPE

AMIANTIT PIPE SYSTEMS

HDPE (**High Density Poly-Ethylene**)

PP- C (**Poly-Propylene - Copolymer**)

AMIANTIT PIPE SYSTEMS

Light Weight

- 1/8 of the steel weight
- Easy to handle
- Reduce Installation cost & time

AMIANTIT PIPE SYSTEMS

Very Flexible Materials

- o Unaffected by soil settlement
- o It can be bended (fewer fittings)
- o Suitable for relining and trench less techniques
- o High strain allowance resulting higher flexibility in both design and installation

AMIANTIT PIPE SYSTEMS

High Corrosion Resistance

- o Lower life cycle cost
- o Does not rust, decay or corrode
- o Does not require corrosion protection
- o Does not require maintenance
- o Sustain aggressive soil conditions
- o Life expectancy in excess of 50 years

AMIANTIT PIPE SYSTEMS

Chemical Resistance

- o Suitable for use with a broad range of chemicals
- o Resistance to all natural gas constituents.
- o Resistance to <u>sulfuric acids up to 80%</u> concentrations.
- o Insoluble in organic and inorganic solvents up to 70°

AMIANTIT PIPE SYSTEMS

100% Leak Tight Jointing System

- o Welded joint result in joint-less pipe line (leak free)
- o No infiltration or Exfiltrations
- o Easy and fast jointing reduce installation time
- o Joints are fully restrained .does not require thrust block
- o Potable water losses and ground water treatment costs encountered with traditional piping systems are eliminated

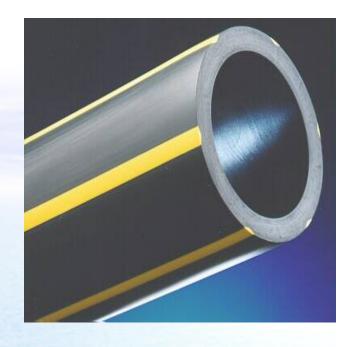
AMIANTIT PIPE SYSTEMS

Non-Toxic Materials

- o Approved for use in potable water applications
- o Approved for use in food contact applications
- o Can be used for medical applications

AMIANTIT PIPE SYSTEMS

UV-Resistance


It is not affected when exposed to direct sun light

AMIANTIT PIPE SYSTEMS

Excellent Flow Characteristics

- o Smooth inner surface
- o Less pumping cost
- o Smaller pipe diameter can be used for the same flow rate compared to traditional materials
- o And it can be evaluated by no or minimal *Pressure drops and this is due to low Friction*

Pipe	C value
HDPE	155-160
PVC	130-150
New steel pipe	130
Glass tubing, Asbestos cement	130
New cement-lined ductile iron	130
Old steel pipe	125
Concrete, wood stave	120
Galvanized steel	110
Old cast iron, old galvanized steel	100
Corrugated steel pipe	60

AMIANTIT PIPE SYSTEMS

Impact Resistance

o Excellent resistance against breakage or damage

o Easy to handle

o High impact resistance even at very low temperatures

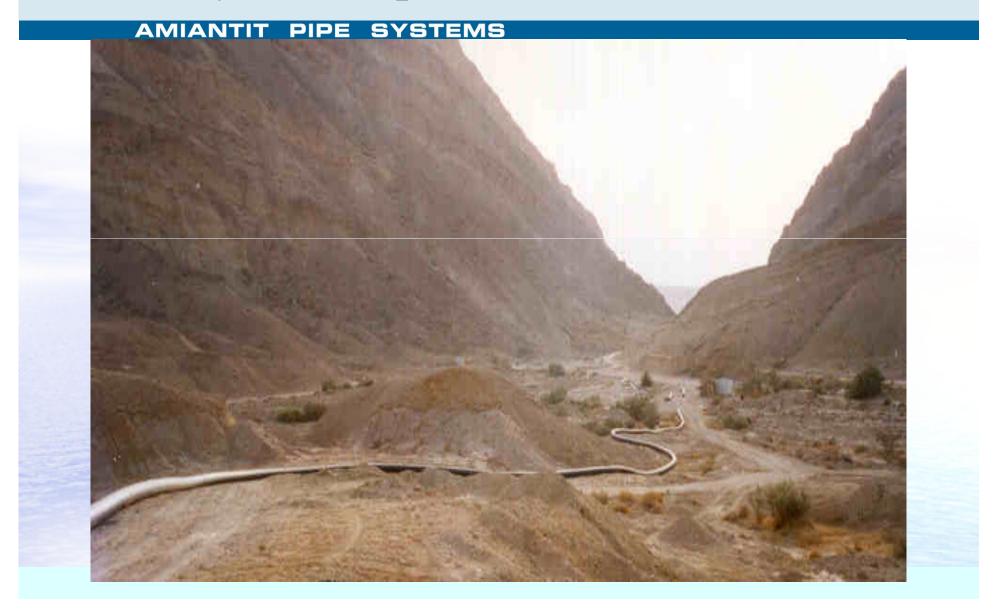
up to -60° C

AMIANTIT PIPE SYSTEMS

Longer Pipe Length Sections

- o Faster to install and Fewer joints
- o Reduced installation cost and time
- o Amiantit HDPE pipes of OD 16 mm up to 110 mm can be provided as coils depending on:
 - o pipe specification
 - o coil dimensions.
 - o container/truck dimensions

The Coil inside diameter should be more than 18 times the pipe OD.


 $Min\ Coil\ ID = 18\ x\ Pipe\ OD\ mm$

Transportation of Coiled PE Pipes

Flexibility of PE Pipes

Transition - Flanges

Transition - Flanges

Transition – Flanges-DI

Transition – Flanges-Steel

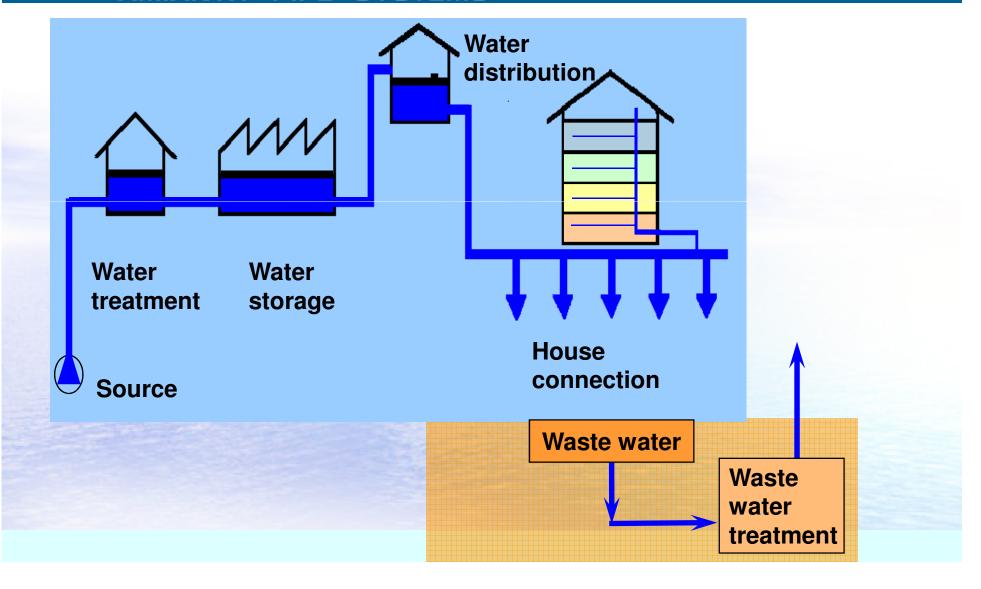
Transition – Flanges-Asbestos

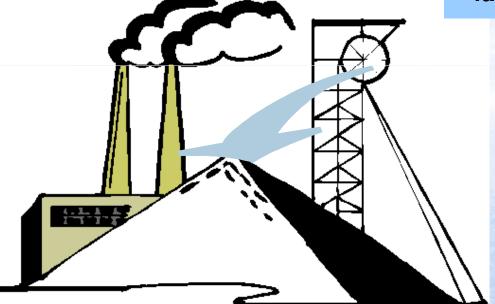
Fewer Bends and Fittings

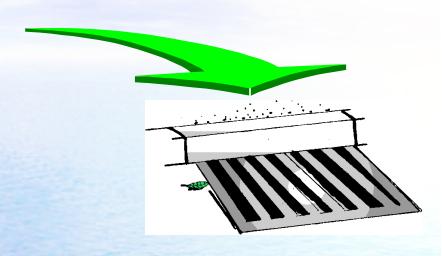
Comparison PE – Metal (advantages PE)

- o higher flexibility
- o possibility to coil
- O no corrosion
- O impact resistance
- O smooth internal and external surfaces
- O lower weight
- O no necessity for cathodic protection
- o possibility to squeeze-off pipes
- o easy jointing technique
- O lower installation costs, no thrust blocks required
- O longer working life

Comparison PE – Metal (disadvantages PE)

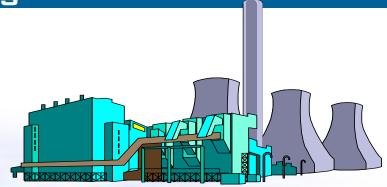

- O higher sensitivity of the material to
 - O- temperature changes
 - O- mechanical loading
- O initial investment in equipment for perfect assembly
- O loss of price advantage large pipe dimensions


AMIANTIT PIPE SYSTEMS


Applications of HDPE

PE Applications – Water Distribution

- Sewage-(communal sewage)
- Pressurized waste-(water treatment etc.)
- Irrigation (dippers, market gardens, farms etc.)

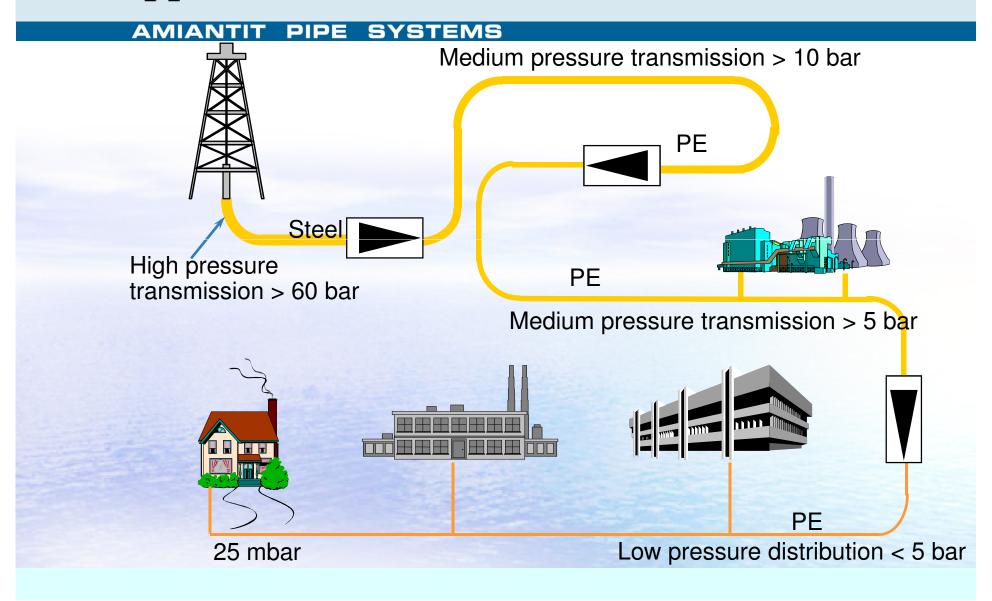


- Cooling systems (for processing machines etc.)
- Cooling water (air conditioning etc.)
- Emergency water supplies (natural disasters etc.)

AMIANTIT PIPE SYSTEMS

Cooling systems

(e.g. supply, metering and monitoring systems)

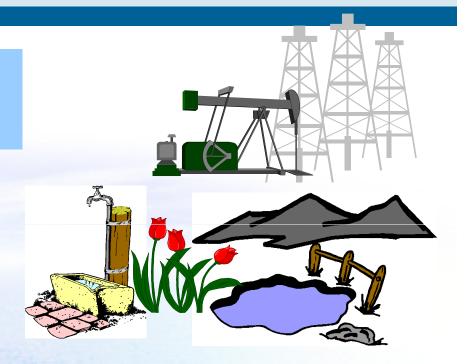

Liquid transportation systems
 (filling plants, liquids for processing etc.)

Health

(i.e. swimming pools, thermal spas, hygiene)

PE Applications – Gas Distribution

AMIANTIT PIPE SYSTEMS


Mining

(minerals, gold and silver extraction, phosphates, potash)

Domestic gardens
 (golf courses, public parks and fountains)

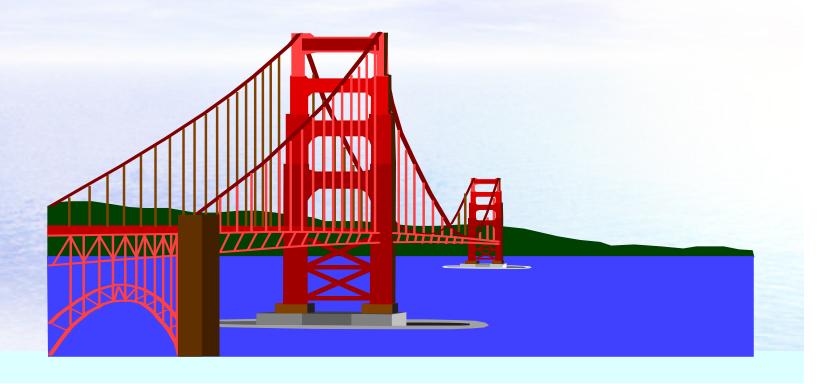
Vehicle cleaning

 (aircraft, car, lorry and bus washing plants etc.)

AMIANTIT PIPE SYSTEMS

Filling stations
 (diesel, petrol, and other fuels)

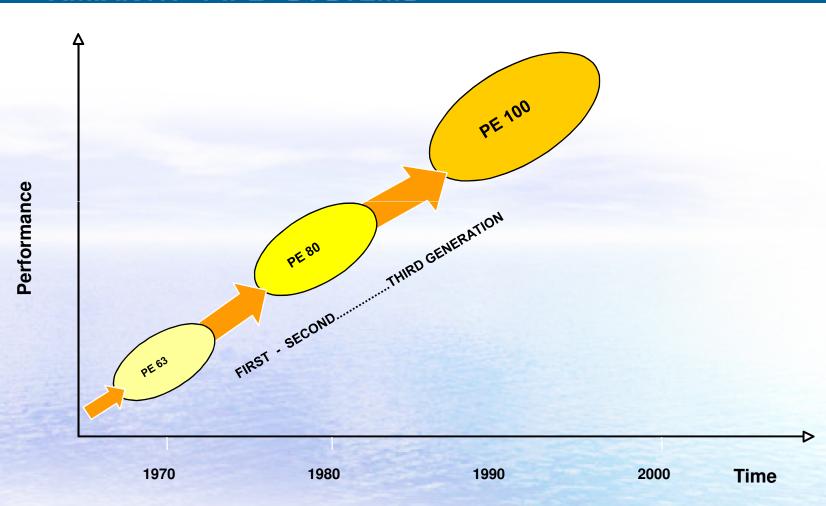
Domestic vacuum cleaning systems
 (cleaning of office buildings, apartment houses and large buildings etc.)


Water systems for sport stadiums
 (irrigation, artifical snow, indoor sport facilities etc.)

AMIANTIT PIPE SYSTEMS

Piping systems for bridges

 (to cover electricity and telecommunication cabling as well as the transport of gas, water and other media)


History of HDPE

History of Plastics

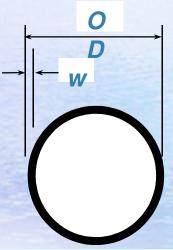
AMIANTIT PIPE SYSTEMS	AMIA	NTIT	PIPE	SYSTEMS
-----------------------	------	------	------	---------

Type of plastic	Abbrev ation	First produced	Density kg/m ²	Design hoop stress at +20°C (MPa)	Pipe diameter (mm)
Polyvinylchloride	PVC-C	1935	1,400	10.0 - 14.0	40 - 630
Polyethylene	LDPE	1945	930 - 940	2.5 - 3.2	16 - 160
Polyethylene	HDPE	1955	950 - 965	5.0 - 6.3	25 - 1,600
Polypropylene	PP	1955	910 - 925	5.0*	25 - 1,200
Polybutylene	PB	1955	920	5.0*	25 - 160
Polyethylene	PEX	1968	930 - 965	5.0*	25 - 160
Polyethylene	MDPE	1971	940 - 950	5.0 - 6.3	25 - 1,600
Polyethylene	LDPE	1986	935 - 940	5.0	16 - 160
Polyethylene	HDPE100	1990	950 - 965	8.0	2.5 - 1,600

PE100 The Third Generation of Polyethylene

Technical Terms of HDPE

Definitions and Concepts


Definitions and Concepts

AMIANTIT PIPE SYSTEMS

Standard Dimension Ratio (SDR):

The ratio between the outside diameter (OD) and the wall thickness

$$SDR = \frac{\text{nominal outside diameter}}{\text{nominal wall thickness}}$$

Definitions & Concepts (Cont.)

SDR	26	21	17	13.6	11	9
PE-80	PN 5	PN 6	PN 8	PN 10	PN 12.5	PN 16
PE-100	PN 6.3	PN 8	PN 10	PN 12.5	PN 16	PN 20

Definitions & Concepts (Cont.)

AMIANTIT PIPE SYSTEMS

Minimum Required Strength (MRS)

The Level of the Minimum Required Strength (MRS), in MPa, at 50-years and 20°C is specified / certified by the raw material suppliers.

-For PE – 80,

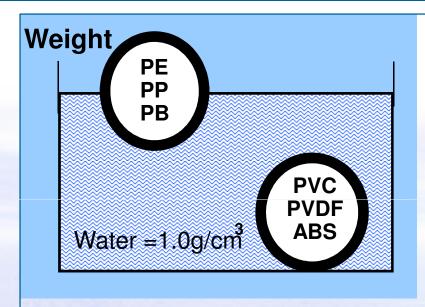
MRS = 8 MPa (80 Bar)

-For PE – 100,

MRS = 10 MPa (100 Bar)

Maximum Allowed Design Stress (σ_s):

" σ_s " is the Maximum Allowable Design Stress for a given application. It is calculated as follows:


 $\sigma_s = MRS / 1.25$

Classification of Polyethylene LDPE / MDPE / HDPE

MRS MPa	Material types
6.3 -7.99	PE 63
8.0 -9.99	PE 80
10.0 -11.19	PE 100

Properties of typical plastic pipeline materials

AMIANTIT PIPE SYSTEMS

Density

PP = 0.91 g/cm^3

 $PB = 0.93 \text{ g/cm}^3$

PE = 0.93 g/cm^3

ABS = 1.03 g/cm^3

 $PVC = 1.38 \text{ g/cm}^3$

PVDF = 1.78 g/cm^3

Behaviour to heat

Product Range

Product Range

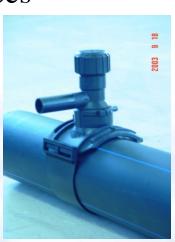
AMIANTIT PIPE SYSTEMS

For HDPE Solid Wall Pipe:

- Diameter Range: 16mm 630mm.
- Pressure Range Up to 16 bar.
- Special Pipes up to 32 bar
- PP solid wall pipes on request.

For PP Corrugated / Profile Wall Pipe:

• Diameter Range 200mm -1000mm.

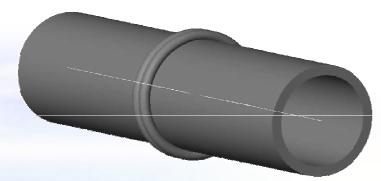

Gravity Application.

Minimum Stiffness 8000 Pa.

HDPE Corrugated pipes – on request.

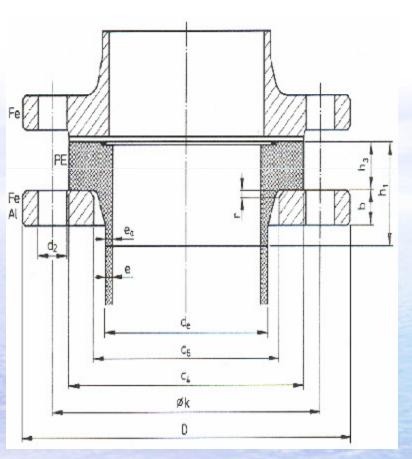
Product Range (Fittings-Cont.)

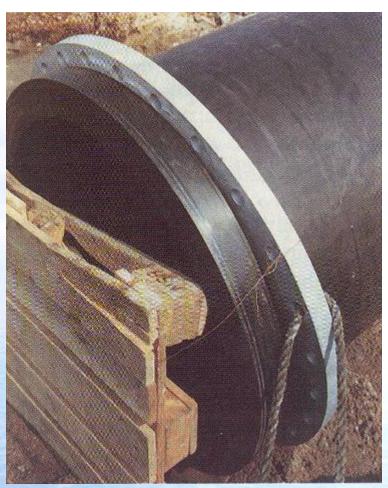
- Mitered, segment welded fittings, Tees / wyes / crosses/ Elbows.
- Socket Welding Fittings.
- Injection molded fittings, such as flanges, reducers, and unequal tees/wyes are sourced out from international reputable suppliers.
- Manhole Connections, Air & Wash Valve Fittings.
- Mechanical Couplings (repair) & Fittings (Compression).
- Electro-fusion fittings & Couplings
- Saddles

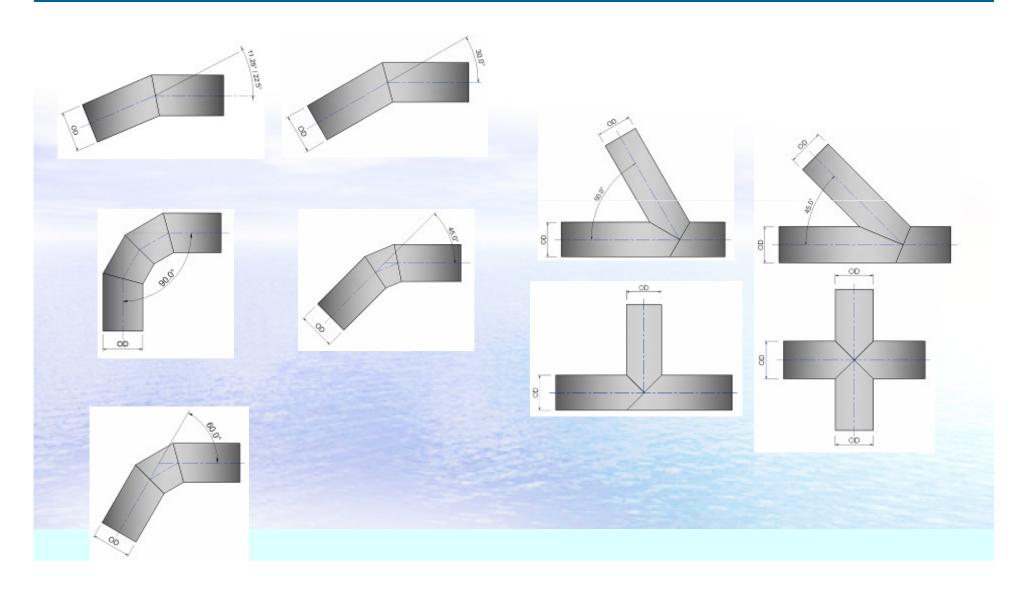


Joining Systems (HDPE)

- But-fusion welding (standard)
- Electro fusion
- Flange connections
- Mechanical joints


Electro-Fusion Joint-Fitting





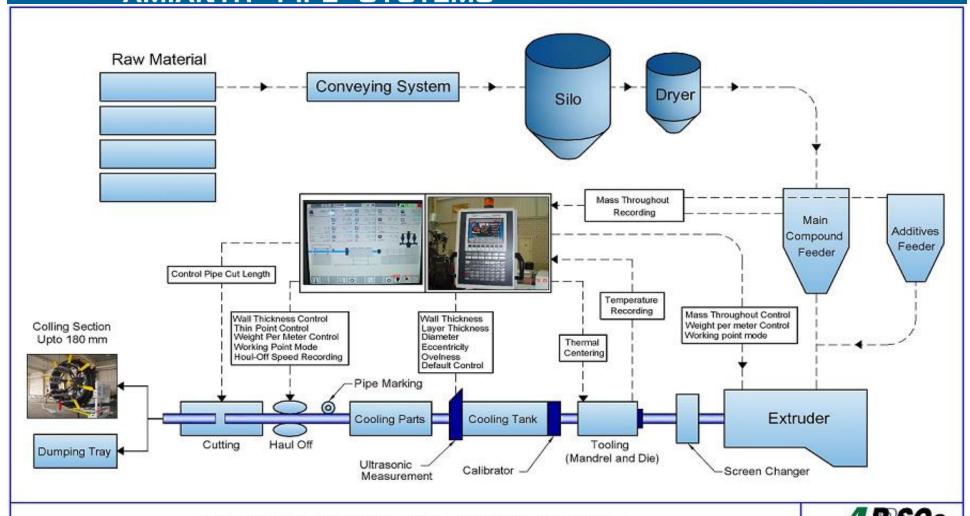
Flange connections

But-fusion welding (standard) & Fittings Segmented

Capacity Available

The Plant

AMIANTIT PIPE SYSTEMS


Amiantit Pipe Manufacturing Co. Ltd.

Location: South Jeddah - Al-Khomra

Fully Automated Manufacturing Process

AMIANTIT PIPE SYSTEMS

APPSCO PROCESS FLOW CHART

Manufacturing Process (Cont.)

AMIANTIT PIPE SYSTEMS

Closed Raw Materials
Conveying System to
ensure Purity & to
control Material
Moisture.

Plant Capacity

AMIANTIT PIPE SYSTEMS

Extended plant capacity

to satisfy customers needs

620 Km/year

15000 Ton/Year Solid Wall

4000 Ton/Year Corrugated

Ability to double the capacity with future expansion

Plant Capacity

Finally New Line is Added in Jan 2010

Manufacturing Process

AMIANTIT PIPE SYSTEMS

Fully automated extrusion lines to ensure consistent high quality products.

Manufacturing Process (Cont.)

AMIANTIT PIPE SYSTEMS

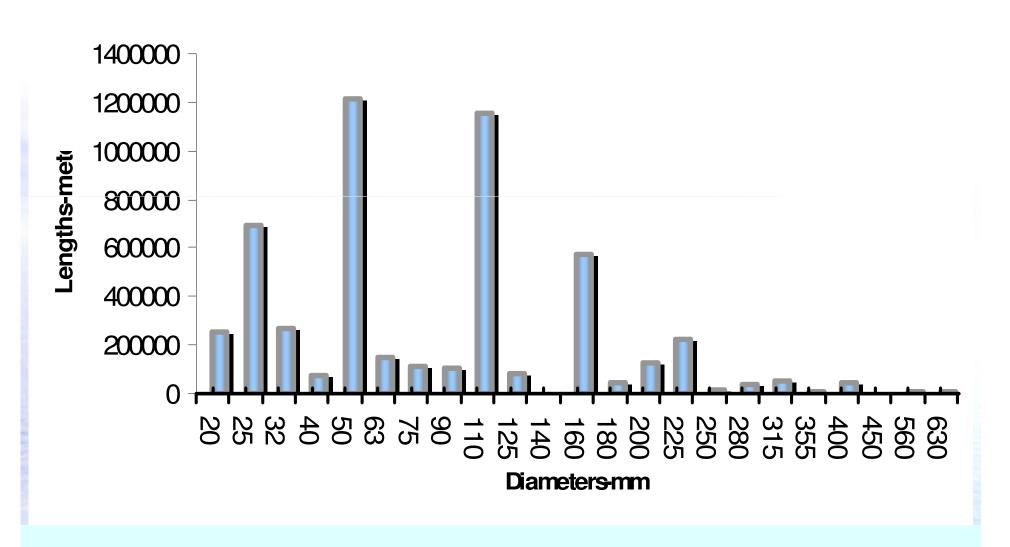
Ultrasonic Measuring with Gravimetric Weight Control Combined Systems to ensure uniform pipe dimensions (Thickness & OD) automatically during production

Manufacturing Process (Cont..

AMIANTIT PIPE SYSTEMS

Pipes can be supplied with standard lengths or coils to reduce installation time and cost

Q.A. & Q.C. CERTIFICATIONS



- ISO 9001/2000 QMS certified company (TUV).
- Fully equipped on-line lab facility with all testing
- required, certified Lab by Certification Body to
- meet the ISO 4427 & EN 13476-1.
- Having Attestation (Certificate of inspection) on
- meeting the relevant test methods.
- Control Calibration for all plant QC and Plant tools.
- NSF Approved pipes for drinking water.
- Burst Test by Bodycote Testing. Testing of four dimensions @ SIX Different Temperatures for each dimension (30, 40, 45, 50, 55, 60°C) in accordance with ASTM D1599.
 - On going FM approval for Firefighting.

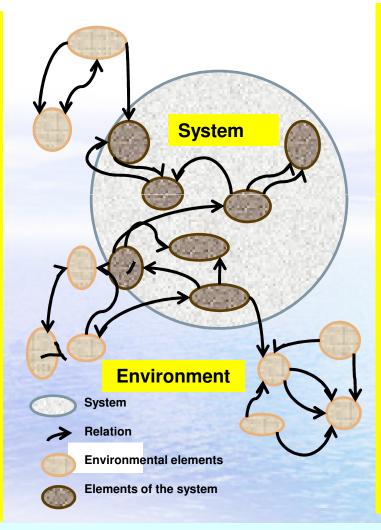
Total Production 5,238,601 m

Total Production 5,238,601 m

OD (mm)	Length (m)
20	253,000
25	693,315
32	268,375
40	73,285
50	1,213,772
63	145,292
75	115,090
90	106,000
110	1,154,314

OD (mm)	Length (m)
125	79,928
140	875
160	576,747
180	45,285
200	128,518
225	221,202
250	12,822
280	36,340
315	52,281

OD (mm)	Length (m)
355	3,821
400	45,609
450	1,002
560	5,578
630	6,150


Caution in Specifying HDPE

Caution in Specifying HDPE

AMIANTIT PIPE SYSTEMS

Environment Effects:

- -Mechanical Actions
- -Thermal Effects
- -Chemical Effects
- -Biological Factors
- -Long-term Effect ,(Ageing Factors)

Systems Effects

- -Pipe, Flanges, Fittings
- -Bolting, Gaskets
- -Valves
- –Hangers and Supports
- Insulations,Coverings, Coatings
- -Heat Tracing

Material Factor

- ·Resins
- Masterbatches
- Manufacture process

Environmental Factor

- Water Temperature
- ·Outside Temperature
- •The quality of Water or Gas
- •Environmental Attack

Pipe lifetime

End-user Factors

- ·Culture
- Installation Cond.
- Special application

Caution in Specifying HDPE

- HDPE is sensitive to Temperatures
- Nature of the fluid
- Need to study All parameters
- Then make proper study of Systems
- Specify your requirements in Specs
- Ensure proper manufacturing
- Ensure qualified welders and Installers
- Consult Manufacturer all the times

Conclusions

Conclusions

- HDPE is Thermo Plastic Material
- ☐ HDPE provides lot of flexibilities
- This can be used in variety of piping applications
- Caution need to be exercised to make appropriate specifications - Key of successes
- in Manufacturer shall be selected properly
- Capacities are available in KSA

Thank you **Questions and Answers**

